Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Biofilm ; 7: 100180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38370152

ABSTRACT

Antivirulence agents are considered a promising strategy to treat bacterial infections. Fluoropyrimidines possess antivirulence and antibiofilm activity against Gram-negative bacteria; however, their mechanism of action is yet unknown. Consistent with their known antibiofilm activity, fluoropyrimidines, particularly 5-fluorocytosine (5-FC), impair curli-dependent surface adhesion by Escherichia coli MG1655 via downregulation of curli fimbriae gene transcription. Curli inhibition requires fluoropyrimidine conversion into fluoronucleotides and is not mediated by c-di-GMP or the ymg-rcs envelope stress response axis, previously suggested as the target of fluorouracil antibiofilm activity in E. coli. In contrast, 5-FC hampered the transcription of curli activators RpoS and stimulated the expression of Fis, a curli repressor affected by nucleotide availability. This last observation suggested a possible perturbation of the de novo pyrimidine biosynthesis by 5-FC: indeed, exposure to 5-FC resulted in a ca. 2-fold reduction of UMP intracellular levels while not affecting ATP. Consistently, expression of the de novo pyrimidine biosynthesis genes carB and pyrB was upregulated in the presence of 5-FC. Our results suggest that the antibiofilm activity of fluoropyrimidines is mediated, at least in part, by perturbation of the pyrimidine nucleotide pool. We screened a genome library in search of additional determinants able to counteract the effects of 5-FC. We found that a DNA fragment encoding the unknown protein D8B36_18,480 and the N-terminal domain of the penicillin-binding protein 1b (PBP1b), involved in peptidoglycan synthesis, could restore curli production in the presence of 5-FC. Deletion of the PBP1b-encoding gene mrcB, induced csgBAC transcription, while overexpression of the gene encoding the D8B36_18,480 protein obliterated its expression, possibly as part of a coordinated response in curli regulation with PBP1b. While the two proteins do not appear to be direct targets of 5-FC, their involvement in curli regulation suggests a connection between peptidoglycan biosynthesis and curli production, which might become even more relevant upon pyrimidine starvation and reduced availability of UDP-sugars needed in cell wall biosynthesis. Overall, our findings link the antibiofilm activity of fluoropyrimidines to the redirection of at least two global regulators (RpoS, Fis) by induction of pyrimidine starvation. This highlights the importance of the de novo pyrimidines biosynthesis pathway in controlling virulence mechanisms in different bacteria and makes the pathway a potential target for antivirulence strategies.

2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-37259338

ABSTRACT

The prevention of nicotinamide adenine dinucleotide (NAD) biosynthesis is considered an attractive therapeutic approach against cancer, considering that tumor cells are characterized by an increased need for NAD to fuel their reprogrammed metabolism. On the other hand, the decline of NAD is a hallmark of some pathological conditions, including neurodegeneration and metabolic diseases, and boosting NAD biosynthesis has proven to be of therapeutic relevance. Therefore, targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD biosynthesis from nicotinamide (NAM) and nicotinic acid (NA), respectively, is considered a promising strategy to modulate intracellular NAD pool. While potent NAMPT inhibitors and activators have been developed, the search for NAPRT modulators is still in its infancy. In this work, we report on the identification of a new class of NAPRT modulators bearing the 1,2-dimethylbenzimidazole scaffold properly substituted in position 5. In particular, compounds 24, 31, and 32 emerged as the first NAPRT activators reported so far, while 18 behaved as a noncompetitive inhibitor toward NA (Ki = 338 µM) and a mixed inhibitor toward phosphoribosyl pyrophosphate (PRPP) (Ki = 134 µM). From in vitro pharmacokinetic studies, compound 18 showed an overall good ADME profile. To rationalize the obtained results, docking studies were performed on the NAPRT structure. Moreover, a preliminary pharmacophore model was built to shed light on the shift from inhibitors to activators.

3.
Molecules ; 28(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36770640

ABSTRACT

The maintenance of a proper NAD+ pool is essential for cell survival, and tumor cells are particularly sensitive to changes in coenzyme levels. In this view, the inhibition of NAD+ biosynthesis is considered a promising therapeutic approach. Current research is mostly focused on targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD+ biosynthesis from nicotinamide and nicotinic acid, respectively. In several types of cancer cells, both enzymes are relevant for NAD+ biosynthesis, with NAPRT being responsible for cell resistance to NAMPT inhibition. While potent NAMPT inhibitors have been developed, only a few weak NAPRT inhibitors have been identified so far, essentially due to the lack of an easy and fast screening assay. Here we present a continuous coupled fluorometric assay whereby the product of the NAPRT-catalyzed reaction is enzymatically converted to NADH, and NADH formation is measured fluorometrically. The assay can be adapted to screen compounds that interfere with NADH excitation and emission wavelengths by coupling NADH formation to the cycling reduction of resazurin to resorufin, which is monitored at longer wavelengths. The assay system was validated by confirming the inhibitory effect of some NA-related compounds on purified human recombinant NAPRT. In particular, 2-hydroxynicotinic acid, 2-amminonicotinic acid, 2-fluoronicotinic acid, pyrazine-2-carboxylic acid, and salicylic acid were confirmed as NAPRT inhibitors, with Ki ranging from 149 to 348 µM. Both 2-hydroxynicotinic acid and pyrazine-2-carboxylic acid were found to sensitize OVCAR-5 cells to the NAMPT inhibitor FK866 by decreasing viability and intracellular NAD+ levels.


Subject(s)
NAD , Niacin , Humans , NAD/metabolism , Cell Line, Tumor , Pentosyltransferases , Nicotinamide Phosphoribosyltransferase , Cytokines/metabolism , Niacin/pharmacology
4.
Elife ; 112022 12 23.
Article in English | MEDLINE | ID: mdl-36476387

ABSTRACT

Axon degeneration contributes to the disruption of neuronal circuit function in diseased and injured nervous systems. Severed axons degenerate following the activation of an evolutionarily conserved signaling pathway, which culminates in the activation of SARM1 in mammals to execute the pathological depletion of the metabolite NAD+. SARM1 NADase activity is activated by the NAD+ precursor nicotinamide mononucleotide (NMN). In mammals, keeping NMN levels low potently preserves axons after injury. However, it remains unclear whether NMN is also a key mediator of axon degeneration and dSarm activation in flies. Here, we demonstrate that lowering NMN levels in Drosophila through the expression of a newly generated prokaryotic NMN-Deamidase (NMN-D) preserves severed axons for months and keeps them circuit-integrated for weeks. NMN-D alters the NAD+ metabolic flux by lowering NMN, while NAD+ remains unchanged in vivo. Increased NMN synthesis by the expression of mouse nicotinamide phosphoribosyltransferase (mNAMPT) leads to faster axon degeneration after injury. We also show that NMN-induced activation of dSarm mediates axon degeneration in vivo. Finally, NMN-D delays neurodegeneration caused by loss of the sole NMN-consuming and NAD+-synthesizing enzyme dNmnat. Our results reveal a critical role for NMN in neurodegeneration in the fly, which extends beyond axonal injury. The potent neuroprotection by reducing NMN levels is similar to the interference with other essential mediators of axon degeneration in Drosophila.


Subject(s)
Drosophila , Nicotinamide Mononucleotide , Animals , Mice , Drosophila/metabolism , Nicotinamide Mononucleotide/metabolism , NAD/metabolism , Axons/physiology , Neurons/physiology , Mammals/metabolism , Cytoskeletal Proteins/metabolism , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism
5.
J Struct Biol ; 214(4): 107917, 2022 12.
Article in English | MEDLINE | ID: mdl-36332744

ABSTRACT

Nicotinamide-adenine dinucleotide (NAD) is centrally important to metabolic reactions that involve redox chemistry. In bacteria, NAD biosynthesis is controlled by different transcription factors, depending on the species. Among the four regulators identified so far, the protein NadQ is reported to act as a repressor of the de novo NAD biosynthetic pathway in proteobacteria. Using comparative genomics, a systematic reconstruction of NadQ regulons in thousands of fully sequenced bacterial genomes has been performed, confirming that NadQ is present in α-proteobacteria and some ß- and γ-proteobacteria, including pathogens like Bordetella pertussis and Neisseria meningitidis, where it likely controls de novo NAD biosynthesis. Through mobility shift assay and mutagenesis, the DNA binding activity of NadQ from Agrobacterium tumefaciens was experimentally validated and determined to be suppressed by ATP. The crystal structures of NadQ in native form and in complex with ATP were determined, indicating that NadQ is a dimer, with each monomer composed of an N-terminal Nudix domain hosting the effector binding site and a C-terminal winged helix-turn-helix domain that binds DNA. Within the dimer, we found one ATP molecule bound, at saturating concentration of the ligand, in keeping with an intrinsic asymmetry of the quaternary structure. Overall, this study provided the basis for depicting a working model of NadQ regulation mechanism.


Subject(s)
Bacteria , NAD , Adenosine Triphosphate
6.
Food Res Int ; 158: 111592, 2022 08.
Article in English | MEDLINE | ID: mdl-35840266

ABSTRACT

In Western and Central Mediterranean countries proteases from wild herbaceous perennial plants commonly known as "thistles" have been used as milk coagulants in cheese-making for centuries. For the first time, the technological and biochemical traits of proteases from cultivated Onopordum tauricum Willd. (Taurian thistle, bull cottonthistle) were assessed. The optimal conditions for minimizing the clotting time and the non-specific proteolytic activity were estimated at the highest (T = 43-45 °C; [Ca2+] = 11-13 mM) and the lowest (T = 35-39 °C; [Ca2+] = 5 mM) temperature and calcium ion levels in the explored range respectively, thus highlighting the difficulty to set the best operative compromise in the first step of cheesemaking. In the conditions adopted in common cheesemaking practice (T = 37 °C; pH = 6.5) 1 mL of reconstituted extract from cultivated thistles coagulated 10 mL of ewe's and goat's milk in 114-146 and 129-167 s, respectively, and 1 mL of reconstituted extract from spontaneous thistles coagulated 10 mL of ewe's and goat's milk in 232-294 and 428-621 s, respectively, while no significant differences in the non-specific proteolytic activity between cultivated and spontaneous O. tauricum extracts were observed. The purified enzyme (tauricosin) was identified as an aspartic protease made up of two sub-units with molecular weights of 32 and 9.6 kDa, respectively. Experimental data encouraged the exploitation of O. tauricum as a new and sustainable non-food crop in marginal and rainfed lands of Mediterranean countries, thus reducing the potential biodiversity losses due to wild collection.


Subject(s)
Cheese , Onopordum , Animals , Cattle , Male , Milk/chemistry , Peptide Hydrolases
7.
Front Mol Biosci ; 9: 834700, 2022.
Article in English | MEDLINE | ID: mdl-35463964

ABSTRACT

Human α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) stands at a branch point of the de novo NAD+ synthesis pathway and plays an important role in maintaining NAD+ homeostasis. It has been recently identified as a novel therapeutic target for a wide range of diseases, including inflammatory, metabolic disorders, and aging. So far, in absence of potent and selective enzyme inhibitors, only a crystal structure of the complex of human dimeric ACMSD with pseudo-substrate dipicolinic acid has been resolved. In this study, we report the crystal structure of the complex of human dimeric ACMSD with TES-1025, the first nanomolar inhibitor of this target, which shows a binding conformation different from the previously published predicted binding mode obtained by docking experiments. The inhibitor has a K i value of 0.85 ± 0.22 nM and binds in the catalytic site, interacting with the Zn2+ metal ion and with residues belonging to both chains of the dimer. The results provide new structural information about the mechanism of inhibition exerted by a novel class of compounds on the ACMSD enzyme, a novel therapeutic target for liver and kidney diseases.

8.
J Biol Chem ; 298(3): 101669, 2022 03.
Article in English | MEDLINE | ID: mdl-35120922

ABSTRACT

The secreted form of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), which catalyzes a key reaction in intracellular NAD biosynthesis, acts as a damage-associated molecular pattern triggering Toll-like receptor 4 (TLR4)-mediated inflammatory responses. However, the precise mechanism of interaction is unclear. Using an integrated approach combining bioinformatics and functional and structural analyses, we investigated the interaction between NAMPT and TLR4 at the molecular level. Starting from previous evidence that the bacterial ortholog of NAMPT cannot elicit the inflammatory response, despite a high degree of structural conservation, two positively charged areas unique to the human enzyme (the α1-α2 and ß1-ß2 loops) were identified as likely candidates for TLR4 binding. However, alanine substitution of the positively charged residues within these loops did not affect either the oligomeric state or the catalytic efficiency of the enzyme. The kinetics of the binding of wildtype and mutated NAMPT to biosensor-tethered TLR4 was analyzed. We found that mutations in the α1-α2 loop strongly decreased the association rate, increasing the KD value from 18 nM, as determined for the wildtype, to 1.3 µM. In addition, mutations in the ß1-ß2 loop or its deletion increased the dissociation rate, yielding KD values of 0.63 and 0.22 µM, respectively. Mutations also impaired the ability of NAMPT to trigger the NF-κB inflammatory signaling pathway in human cultured macrophages. Finally, the involvement of the two loops in receptor binding was supported by NAMPT-TLR4 docking simulations. This study paves the way for future development of compounds that selectively target eNAMPT/TLR4 signaling in inflammatory disorders.


Subject(s)
Cytokines , Nicotinamide Phosphoribosyltransferase , Toll-Like Receptor 4 , Cytokines/genetics , Cytokines/metabolism , Humans , NAD/metabolism , NF-kappa B/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Protein Binding , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
9.
IUBMB Life ; 74(7): 562-572, 2022 07.
Article in English | MEDLINE | ID: mdl-34866305

ABSTRACT

The enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes a reaction central to all known NAD biosynthetic routes. In mammals, three isoforms with distinct molecular and catalytic properties, different subcellular and tissue distribution have been characterized. Each isoform is essential for cell survival, with a critical role in modulating NAD levels in a compartment-specific manner. Each isoform supplies NAD to specific NAD-dependent enzymes, thus regulating their activity with impact on several biological processes, including DNA repair, proteostasis, cell differentiation, and neuronal maintenance. The nuclear NMNAT1 and the cytoplasmic NMNAT2 are also emerging as relevant targets in specific types of cancers and NMNAT2 has a key role in the activation of antineoplastic compounds. This review recapitulates the biochemical properties of the three isoforms and focuses on recent advances on their protective function, involvement in human diseases and role as druggable targets.


Subject(s)
Nicotinamide-Nucleotide Adenylyltransferase , Animals , Cell Nucleus/metabolism , Cytosol/metabolism , Humans , Mammals/metabolism , NAD/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/chemistry , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Protein Isoforms/metabolism
10.
Int J Mol Sci ; 22(12)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199271

ABSTRACT

Nicotinamide mononucleotide (NMN) is a key intermediate in the nicotinamide adenine dinucleotide (NAD+) biosynthesis. Its supplementation has demonstrated beneficial effects on several diseases. The aim of this study was to characterize NMN deamidase (PncC) inactive mutants to use as possible molecular recognition elements (MREs) for an NMN-specific biosensor. Thermal stability assays and steady-state fluorescence spectroscopy measurements were used to study the binding of NMN and related metabolites (NaMN, Na, Nam, NR, NAD, NADP, and NaAD) to the PncC mutated variants. In particular, the S29A PncC and K61Q PncC variant forms were selected since they still preserve the ability to bind NMN in the micromolar range, but they are not able to catalyze the enzymatic reaction. While S29A PncC shows a similar affinity also for NaMN (the product of the PncC catalyzed reaction), K61Q PncC does not interact significantly with it. Thus, PncC K61Q mutant seems to be a promising candidate to use as specific probe for an NMN biosensor.


Subject(s)
Amidohydrolases/genetics , Biosensing Techniques , Mutation/genetics , Nicotinamide Mononucleotide/metabolism , Enzyme Stability , Kinetics , Nicotinamide Mononucleotide/chemistry , Protein Multimerization , Spectrometry, Fluorescence , Temperature , Tryptophan/metabolism
11.
Cell Mol Life Sci ; 78(7): 3317-3331, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33755743

ABSTRACT

Extracellular NAD represents a key signaling molecule in different physiological and pathological conditions. It exerts such function both directly, through the activation of specific purinergic receptors, or indirectly, serving as substrate of ectoenzymes, such as CD73, nucleotide pyrophosphatase/phosphodiesterase 1, CD38 and its paralog CD157, and ecto ADP ribosyltransferases. By hydrolyzing NAD, these enzymes dictate extracellular NAD availability, thus regulating its direct signaling role. In addition, they can generate from NAD smaller signaling molecules, like the immunomodulator adenosine, or they can use NAD to ADP-ribosylate various extracellular proteins and membrane receptors, with significant impact on the control of immunity, inflammatory response, tumorigenesis, and other diseases. Besides, they release from NAD several pyridine metabolites that can be taken up by the cell for the intracellular regeneration of NAD itself. The extracellular environment also hosts nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase, which inside the cell catalyze key reactions in NAD salvaging pathways. The extracellular forms of these enzymes behave as cytokines, with pro-inflammatory functions. This review summarizes the current knowledge on the extracellular NAD metabolome and describes the major biochemical properties of the enzymes involved in extracellular NAD metabolism, focusing on the contribution of their catalytic activities to the biological function. By uncovering the controversies and gaps in their characterization, further research directions are suggested, also to better exploit the great potential of these enzymes as therapeutic targets in various human diseases.


Subject(s)
ADP Ribose Transferases/metabolism , Disease , Metabolome , NAD/metabolism , Pentosyltransferases/metabolism , Pyrophosphatases/metabolism , Animals , Humans , Signal Transduction
12.
Foods ; 9(6)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471174

ABSTRACT

Plant proteases used in cheesemaking are easily available and could increase the acceptability of cheeses, otherwise hindered by ethical issues (e.g., religions, dietary habits, aversion to genetically engineered food and food ingredients). The milk clotting potential of Onopordum tauricum (Willd.) aqueous extract as an alternative to animal rennet was assessed for the first time in milk of different species (ewe, goat, cow). Among the aerial anatomical parts, i.e., receptacle, leaves, stems, and flowers, only the latter ones showed clotting properties. A response surface methodology (RSM) was used to explore the effects of three independent variables (temperature, pH, volume of coagulant) on the milk clotting activity (MCA) of the flower extract. A second-order polynomial model adequately described the experimental data and predicted a temperature value of 55 °C, a pH value of 4.9-5.7, and a volume of coagulant of 300-500 µL (added to 5 mL of milk) as optimal conditions to maximize the MCA. At a 35 °C temperature and natural milk pH of 6.7-6.8, the estimated MCA of the O. tauricum extract was 72-87, 69-86, and 75-151, in goat's, ewe's, and cow's milk, respectively. In comparison, the MCA of calf rennet was 5.4-4.9, 3.3-14.7, and 4.9-16.7 times higher than that of the plant extract in goat's, ewe's, and cow's milk, respectively.

13.
Foods ; 9(3)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164203

ABSTRACT

The well-recognized efficiency of Tenebrio molitor larvae to convert low quality organic matter into a nutritionally valuable biomass was exploited to manage solid wastes coming from the olive oil industry, which represent a severe environmental challenge in the Mediterranean area. Three organic pomace-enriched substrates (mixtures middlings/pomace 3:1, 1:1, and 1:3) were assessed, together with 100% organic wheat flour and 100% organic middlings as control feeds. A feeding substrate made up of 25% olive pomace and 75% wheat middlings appeared to be the best compromise between growth performance (larval and pupal weights, survival rate, development time) and nutritional properties of mealworm larvae. In fact, larvae fed the 3:1 feed showed the highest dry matter (DM) yield (38.05%), protein content (47.58% DM), and essential/non-essential amino acids ratio (1.16). Fat content (32.14% DM) and fatty acid composition were not significantly different than those of larvae fed more pomace-enriched feeds.

14.
J Bacteriol ; 202(10)2020 04 27.
Article in English | MEDLINE | ID: mdl-32152217

ABSTRACT

Diadenosine tetraphosphate (Ap4A) is a dinucleotide found in both prokaryotes and eukaryotes. In bacteria, its cellular levels increase following exposure to various stress signals and stimuli, and its accumulation is generally correlated with increased sensitivity to a stressor(s), decreased pathogenicity, and enhanced antibiotic susceptibility. Ap4A is produced as a by-product of tRNA aminoacylation, and is cleaved to ADP molecules by hydrolases of the ApaH and Nudix families and/or by specific phosphorylases. Here, considering evidence that the recombinant protein YqeK from Staphylococcus aureus copurified with ADP, and aided by thermal shift and kinetic analyses, we identified the YqeK family of proteins (COG1713) as an unprecedented class of symmetrically cleaving Ap4A hydrolases. We validated the functional assignment by confirming the ability of YqeK to affect in vivo levels of Ap4A in B. subtilis YqeK shows a catalytic efficiency toward Ap4A similar to that of the symmetrically cleaving Ap4A hydrolases of the known ApaH family, although it displays a distinct fold that is typical of proteins of the HD domain superfamily harboring a diiron cluster. Analysis of the available 3D structures of three members of the YqeK family provided hints to the mode of substrate binding. Phylogenetic analysis revealed the occurrence of YqeK proteins in a consistent group of Gram-positive bacteria that lack ApaH enzymes. Comparative genomics highlighted that yqeK and apaH genes share a similar genomic context, where they are frequently found in operons involved in integrated responses to stress signals.IMPORTANCE Elevation of Ap4A level in bacteria is associated with increased sensitivity to heat and oxidative stress, reduced antibiotic tolerance, and decreased pathogenicity. ApaH is the major Ap4A hydrolase in gamma- and betaproteobacteria and has been recently proposed as a novel target to weaken the bacterial resistance to antibiotics. Here, we identified the orphan YqeK protein family (COG1713) as a highly efficient Ap4A hydrolase family, with members distributed in a consistent group of bacterial species that lack the ApaH enzyme. Among them are the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Mycoplasma pneumoniae By identifying the player contributing to Ap4A homeostasis in these bacteria, we disclose a novel target to develop innovative antibacterial strategies.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Bacterial Proteins/metabolism , Staphylococcus aureus/enzymology , Acid Anhydride Hydrolases/chemistry , Acid Anhydride Hydrolases/genetics , Adenosine Diphosphate/metabolism , Amino Acid Sequence , Bacteria/chemistry , Bacteria/classification , Bacteria/enzymology , Bacteria/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Cloning, Molecular , Dinucleoside Phosphates/chemistry , Dinucleoside Phosphates/metabolism , Kinetics , Multigene Family , Phylogeny , Sequence Alignment , Staphylococcus aureus/chemistry , Staphylococcus aureus/genetics
15.
Nat Commun ; 10(1): 4116, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511522

ABSTRACT

Damage-associated molecular patterns (DAMPs) are molecules that can be actively or passively released by injured tissues and that activate the immune system. Here we show that nicotinate phosphoribosyltransferase (NAPRT), detected by antibody-mediated assays and mass spectrometry, is an extracellular ligand for Toll-like receptor 4 (TLR4) and a critical mediator of inflammation, acting as a DAMP. Exposure of human and mouse macrophages to NAPRT activates the inflammasome and NF-κB for secretion of inflammatory cytokines. Furthermore, NAPRT enhances monocyte differentiation into macrophages by inducing macrophage colony-stimulating factor. These NAPRT-induced effects are independent of NAD-biosynthetic activity, but rely on NAPRT binding to TLR4. In line with our finding that NAPRT mediates endotoxin tolerance in vitro and in vivo, sera from patients with sepsis contain the highest levels of NAPRT, compared to patients with other chronic inflammatory conditions. Together, these data identify NAPRT as a endogenous ligand for TLR4 and a mediator of inflammation.


Subject(s)
Extracellular Space/metabolism , Inflammation/enzymology , Pentosyltransferases/metabolism , Toll-Like Receptor 4/metabolism , Cell Differentiation , Extracellular Fluid/enzymology , Humans , Inflammation/genetics , Inflammation/pathology , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Monocytes/cytology , Myeloid Cells/metabolism , Nicotinamide Phosphoribosyltransferase/chemistry , Nicotinamide Phosphoribosyltransferase/metabolism , Pentosyltransferases/blood , Pentosyltransferases/chemistry , Protein Binding , Risk Factors , Sepsis/blood , Sepsis/enzymology
16.
Antioxid Redox Signal ; 31(15): 1150-1165, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31456414

ABSTRACT

Aim: Nicotinamide adenine dinucleotide (NAD+) plays central roles in a wide array of normal and pathological conditions. Inhibition of NAD+ biosynthesis can be exploited therapeutically in cancer, including melanoma. To obtain quantitation of NAD+ levels in live cells and to address the issue of the compartmentalization of NAD+ biosynthesis, we exploited a recently described genetically encoded NAD+ biosensor (LigA-circularly permutated Venus), which was targeted to the cytosol, mitochondria, and nuclei of BRAF-V600E A375 melanoma cells, a model of metastatic melanoma (MM). Results: FK866, a specific inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), the main NAD+-producing enzyme in MM cells, was used to monitor NAD+ depletion kinetics at the subcellular level in biosensor-transduced A375 cells. In addition, we treated FK866-blocked A375 cells with NAD+ precursors, including nicotinamide, nicotinic acid, nicotinamide riboside, and quinolinic acid, highlighting an organelle-specific capacity of each substrate to rescue from NAMPT block. Expression of NAD+ biosynthetic enzymes was then biochemically studied in isolated organelles, revealing the presence of NAMPT in all three cellular compartments, whereas nicotinate phosphoribosyltransferase was predominantly cytosolic and mitochondrial, and nicotinamide riboside kinase mitochondrial and nuclear. In keeping with biosensor data, quinolinate phosphoribosyltransferase was expressed at extremely low levels. Innovation and Conclusions: Throughout this work, we validated the use of genetically encoded NAD+ biosensors to characterize subcellular distribution of NAD+ production routes in MM. The chance of real-time monitoring of NAD+ fluctuations after chemical perturbations, together with a deeper comprehension of the cofactor biosynthesis compartmentalization, strengthens the foundation for a targeted strategy of NAD+ pool manipulation in cancer and metabolic diseases.


Subject(s)
Biosensing Techniques/methods , Melanoma/metabolism , NAD/metabolism , Organelles/metabolism , Cell Line, Tumor , Humans , Lentivirus/genetics , Microscopy, Confocal , Mitochondria/metabolism , Time-Lapse Imaging
17.
Front Immunol ; 10: 1720, 2019.
Article in English | MEDLINE | ID: mdl-31402913

ABSTRACT

Cancer cells, particularly in solid tumors, are surrounded by non-neoplastic elements, including endothelial and stromal cells, as well as cells of immune origin, which can support tumor growth by providing the right conditions. On the other hand, local hypoxia, and lack of nutrients induce tumor cells to reprogram their metabolism in order to survive, proliferate, and disseminate: the same conditions are also responsible for building a tumor-suppressive microenvironment. In addition to tumor cells, it is now well-recognized that metabolic rewiring occurs in all cellular components of the tumor microenvironment, affecting epigenetic regulation of gene expression and influencing differentiation/proliferation decisions of these cells. Nicotinamide adenine dinucleotide (NAD) is an essential co-factor for energy transduction in metabolic processes. It is also a key component of signaling pathways, through the regulation of NAD-consuming enzymes, including sirtuins and PARPs, which can affect DNA plasticity and accessibility. In addition, both NAD-biosynthetic and NAD-consuming enzymes can be present in the extracellular environment, adding a new layer of complexity to the system. In this review we will discuss the role of the "NADome" in the metabolic cross-talk between cancer and infiltrating immune cells, contributing to cancer growth and immune evasion, with an eye to therapeutic implications.


Subject(s)
Biosynthetic Pathways/genetics , Gene Expression Regulation, Enzymologic , Immunity, Cellular , Immunity, Innate , NAD/biosynthesis , Neoplasms/etiology , Neoplasms/metabolism , Energy Metabolism , Epigenesis, Genetic , Humans , Neoplasms/pathology , Sirtuins/metabolism , Tryptophan/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
18.
PLoS One ; 14(2): e0211747, 2019.
Article in English | MEDLINE | ID: mdl-30707742

ABSTRACT

In the present study, inclusion of mealworm (Tenebrio molitor L.) powder into bread doughs at 5 and 10% substitution level of soft wheat (Triticum aestivum L.) flour was tested to produce protein fortified breads. The addition of mealworm powder (MP) did not negatively affect the technological features of either doughs or breads. All the tested doughs showed the same leavening ability, whereas breads containing 5% MP showed the highest specific volume and the lowest firmness. An enrichment in protein content was observed in experimental breads where the highest values for this parameter were recorded in breads containing 10% MP. Breads fortified with 10% MP also exhibited a significant increase in the content of free amino acids, and especially in the following essential amino acids: tyrosine, methionine, isoleucine, and leucine. By contrast, no differences in nutritional quality of lipids were seen between fortified and control breads. Results of sensory analyses revealed that protein fortification of bread with MP significantly affected bread texture and overall liking, as well as crust colour, depending on the substitution level. Overall, proof of concept was provided for the inclusion of MP into bread doughs started with different leavening agents (sourdough and/or baker's yeast), at 5 or 10% substitution level of soft wheat flour. Based on the Technology Readiness Level (TRL) scale, the proposed bread making technology can be situated at level 4 (validation in laboratory environment), thus suggesting that the production of breads with MP might easily be scaled up at industrial level. However, potential spoilage and safety issues that need to be further considered were highlighted.


Subject(s)
Bread , Food, Fortified , Insect Proteins/chemistry , Tenebrio/chemistry , Triticum/chemistry , Animals
19.
FASEB J ; 33(3): 3704-3717, 2019 03.
Article in English | MEDLINE | ID: mdl-30514106

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway from nicotinamide. By controlling the biosynthesis of NAD+, NAMPT regulates the activity of NAD+-converting enzymes, such as CD38, poly-ADP-ribose polymerases, and sirtuins (SIRTs). SIRT6 is involved in the regulation of a wide number of metabolic processes. In this study, we investigated the ability of SIRT6 to regulate intracellular NAMPT activity and NAD(P)(H) levels. BxPC-3 cells and MCF-7 cells were engineered to overexpress a catalytically active or a catalytically inactive SIRT6 form or were engineered to silence endogenous SIRT6 expression. In SIRT6-overexpressing cells, NAD(H) levels were up-regulated, as a consequence of NAMPT activation. By immunopurification and incubation with recombinant SIRT6, NAMPT was found to be a direct substrate of SIRT6 deacetylation, with a mechanism that up-regulates NAMPT enzymatic activity. Extracellular NAMPT release was enhanced in SIRT6-silenced cells. Also glucose-6-phosphate dehydrogenase activity and NADPH levels were increased in SIRT6-overexpressing cells. Accordingly, increased SIRT6 levels reduced cancer cell susceptibility to H2O2-induced oxidative stress and to doxorubicin. Our data demonstrate that SIRT6 affects intracellular NAMPT activity, boosts NAD(P)(H) levels, and protects against oxidative stress. The use of SIRT6 inhibitors, together with agents inducing oxidative stress, may represent a promising treatment strategy in cancer.-Sociali, G., Grozio, A., Caffa, I., Schuster, S., Becherini, P., Damonte, P., Sturla, L., Fresia, C., Passalacqua, M., Mazzola, F., Raffaelli, N., Garten, A., Kiess, W., Cea, M., Nencioni, A., Bruzzone, S. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells.


Subject(s)
Cytokines/metabolism , NADP/metabolism , Neoplasms/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Sirtuins/metabolism , Cell Line , Cell Line, Tumor , Doxorubicin/pharmacology , Glucosephosphate Dehydrogenase/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Hydrogen Peroxide/pharmacology , MCF-7 Cells , Neoplasms/drug therapy , Oxidative Stress/drug effects , Oxidative Stress/physiology , Poly(ADP-ribose) Polymerases/metabolism , Up-Regulation/drug effects , Up-Regulation/physiology
20.
Nature ; 563(7731): 354-359, 2018 11.
Article in English | MEDLINE | ID: mdl-30356218

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is a co-substrate for several enzymes, including the sirtuin family of NAD+-dependent protein deacylases. Beneficial effects of increased NAD+ levels and sirtuin activation on mitochondrial homeostasis, organismal metabolism and lifespan have been established across species. Here we show that α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), the enzyme that limits spontaneous cyclization of α-amino-ß-carboxymuconate-ε-semialdehyde in the de novo NAD+ synthesis pathway, controls cellular NAD+ levels via an evolutionarily conserved mechanism in Caenorhabditis elegans and mouse. Genetic and pharmacological inhibition of ACMSD boosts de novo NAD+ synthesis and sirtuin 1 activity, ultimately enhancing mitochondrial function. We also characterize two potent and selective inhibitors of ACMSD. Because expression of ACMSD is largely restricted to kidney and liver, these inhibitors may have therapeutic potential for protection of these tissues from injury. In summary, we identify ACMSD as a key modulator of cellular NAD+ levels, sirtuin activity and mitochondrial homeostasis in kidney and liver.


Subject(s)
Carboxy-Lyases/metabolism , Conserved Sequence , Evolution, Molecular , Health , Mitochondria/physiology , NAD/biosynthesis , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Carboxy-Lyases/antagonists & inhibitors , Carboxy-Lyases/chemistry , Carboxy-Lyases/deficiency , Cell Line , Choline , Disease Models, Animal , Female , Gene Knockdown Techniques , Hepatocytes/cytology , Hepatocytes/drug effects , Homeostasis/drug effects , Humans , Kidney/cytology , Kidney/drug effects , Liver/cytology , Liver/drug effects , Longevity/drug effects , Male , Methionine/deficiency , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/physiopathology , Non-alcoholic Fatty Liver Disease/prevention & control , Rats , Sirtuins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...